Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur J Radiol ; 145: 110031, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1527655

ABSTRACT

PURPOSE: To assess prognostic value of body composition parameters measured at CT to predict risk of hospitalization in patients with COVID-19 infection. METHODS: 177 patients with SARS-CoV-2 infection and with abdominopelvic CT were included in this retrospective IRB approved two-institution study. Patients were stratified based on disease severity as outpatients (no hospital admission) and patients who were hospitalized (inpatients). Two readers blinded to the clinical outcome segmented axial CT images at the L3 vertebral body level for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), muscle adipose tissue (MAT), muscle mass (MM). VAT to total adipose tissue ratio (VAT/TAT), MAT/MM ratio, and muscle index (MI) at L3 were computed. These measures, along with detailed clinical risk factors, were compared in patients stratified by severity. Various logistic regression clinical and clinical + imaging models were compared to discriminate inpatients from outpatients. RESULTS: There were 76 outpatients (43%) and 101 inpatients. Male gender (p = 0.013), age (p = 0.0003), hypertension (p = 0.0003), diabetes (p = 0.0001), history of cardiac disease (p = 0.007), VAT/TAT (p < 0.0001), and MAT/MM (p < 0.0001), but not BMI, were associated with hospitalization. A clinical model (age, gender, BMI) had AUC of 0.70. Addition of VAT/TAT to the clinical model improved the AUC to 0.73. Optimal model that included gender, BMI, race (Black), MI, VAT/TAT, as well as interaction between gender and VAT/TAT and gender and MAT/MM demonstrated the highest AUC of 0.83. CONCLUSION: MAT/MM and VAT/TAT provides important prognostic information in predicting patients with COVID-19 who are likely to require hospitalization.


Subject(s)
COVID-19 , Body Composition , Body Mass Index , Hospitalization , Humans , Intra-Abdominal Fat , Male , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
2.
Front Immunol ; 12: 702506, 2021.
Article in English | MEDLINE | ID: covidwho-1376698

ABSTRACT

Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing ß-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering ß-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop ß-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering ß-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/virology , Parvoviridae Infections/immunology , Animals , Humans , Parvovirus/immunology , Rats
3.
Abdom Radiol (NY) ; 46(2): 818-825, 2021 02.
Article in English | MEDLINE | ID: covidwho-691818

ABSTRACT

PURPOSE: To assess visceral (VAT), subcutaneous (SAT), and total adipose tissue (TAT) estimates at abdominopelvic CT in COVID-19 patients with different severity, and analyze Body Mass Index (BMI) and CT estimates of fat content in patients requiring hospitalization. METHODS: In this retrospective IRB approved HIPPA compliant study, 51 patients with SARS-CoV-2 infection with abdominopelvic CT were included. Patients were stratified based on disease severity as outpatient (no hospital admission) and patients who were hospitalized. Subset of hospitalized patient required mechanical ventilation (MV). A radiologist blinded to the clinical outcome evaluated single axial slice on CT at L3 vertebral body for VATL3, SATL3, TATL3, and VAT/TATL3. These measures along with age, gender, and BMI were compared. A clinical model that included age, sex, and BMI was compared to clinical + CT model that also included VATL3 to discriminate hospitalized patients from outpatients. RESULTS: There were ten outpatients and 41 hospitalized patients. 11 hospitalized patients required MV. There were no significant differences in age and BMI between the hospitalized and outpatients (all p > 0.05). There was significantly higher VATL3 and VAT/TATL3 in hospitalized patients compared to the outpatients (all p < 0.05). Area under the curve (AUC) of the clinical + CT model was higher compared to the clinical model (AUC 0.847 versus 0.750) for identifying patients requiring hospitalization. CONCLUSION: Higher VATL3 was observed in COVID-19 patients that required hospitalization compared to the outpatients, and addition of VATL3 to the clinical model improved AUC in discriminating hospitalized from outpatients in this preliminary study.


Subject(s)
COVID-19/physiopathology , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/physiopathology , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment/methods , SARS-CoV-2 , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL